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We study discrete surface breathers in two-dimensional lattices of inductively coupled split-ring resonators
with capacitive nonlinearity. We consider both conservative �Hamiltonian� and analyze the properties of the
modes localized in space and periodic in time �discrete breathers� located in the corners and on the edges of the
lattice. We find that surface breathers in the Hamiltonian systems have lower energy than their bulk counter-
parts and they are generally more stable.
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Theoretical results on the existence of unusual types of
discrete surface solitons localized in the corners or on the
edges of two-dimensional �2D� photonic lattices �1–3� have
been recently confirmed by the experimental observation of
two-dimensional surface solitons in optically induced photo-
nic lattices �4� and two-dimensional waveguide arrays laser
written in fused silica �5,6�. These two-dimensional nonlin-
ear surface modes demonstrate unusual features in compari-
son to their counterparts in truncated one-dimensional wave-
guide arrays �7–9�. In particular, in sharp contrast to one-
dimensional surface solitons, the mode threshold is lower at
the surface than in the bulk making the mode excitation
easier �2�.

Recently, it was shown �10� that, similar to discrete soli-
tons analyzed extensively for optical systems, surface dis-
crete breathers can be excited near the edge of a one-
dimensional metamaterial created by a truncated array of
nonlinear split-ring resonators. Networks of split-ring reso-
nators �SRRs� that have nonlinear capacitive elements can
support nonlinear localized modes or discrete breathers
�DBs� under rather general conditions that depend primarily
on the inductive coupling between SRRs and their resonant
frequency �11,12�. The corresponding one-dimensional sur-
face modes have somewhat lower energy �in the Hamiltonian
case� and can easily be generated in one-dimensional SRR
lattices �10�.

In this Brief Report, we develop further those ideas and
analyze two- dimensional lattices of split-ring resonators.
Similar to the optical systems, we find that two-dimensional
lattices of inductively coupled split-ring resonators with ca-
pacitive nonlinearity can support the existence of long-lived
two-dimensional discrete breathers localized in the corners
or on the edge of the lattice.

We consider a two-dimensional lattice of SRRs in both
planar and planar-axial configurations �see Figs. 1�a� and
1�b��. In the planar configuration, all SRR loops are in the
same plane with their centers forming an orthogonal lattice,
while in the planar-axial configuration the loops have planar
arrangement in one direction and axial configuration in the
other direction. Each SRR is equivalent to a nonlinear RLC

circuit, with Ohmic resistance R, self-inductance L, and ca-
pacitance C. We assume that the capacitor C contains a non-
linear Kerr-type dielectric, so that the permittivity � can be
presented in the form

���E�2� = �0��� + �
�E�2

Ec
2 � , �1�

where E is the electric field with the characteristic value Ec,
�� is the linear permittivity, �0 is the permittivity of the
vacuum, and �=+1 �−1� corresponds to self-focusing
�self-defocusing� nonlinearity, respectively. As a result,
each SRR acquires the field-dependent capacitance
C��E�2�=���Eg�2�A /dg, where A is the area of the cross sec-
tion of the SRR wire, Eg is the electric field induced along
the SRR slit, and dg is the size of the slit. The field Eg is
induced by the magnetic and/or the electric components of
the applied electromagnetic field, depending on the relative
orientation of the field with respect to the SRR plane and the
slits �13�. Below we assume that the magnetic component of
the incident �applied� electromagnetic field is always perpen-
dicular to the SRR plane, so that the electric field component
is transverse to the slit. With this assumption, only the mag-
netic component of the field excites an electromotive force in
SRRs, resulting in an oscillating current in each SRR loop.
This results in the development of an oscillating voltage dif-

(a) (b)

FIG. 1. Schematic of a two-dimensional lattice of split-ring
resonators for �a� planar and �b� planar-axial geometries. In both the
geometries the magnetic component of the applied field is directed
along the SRR axes, while the electric field component is transverse
to the slits.
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ference U across the slits or, equivalently, of an oscillating
electric field Eg in the slits.

If Q is the charge stored in each SRR capacitor, from a
general relation of a voltage-dependent capacitance
C�U�=dQ /dU and Eq. �1�, we obtain

Q = C��1 + �
U2

3��Uc
2�U , �2�

where U=dgEg, C�=�0���A /dg� is the linear capacitance, and
Uc=dgEc. We assume that the arrays are placed in a time-
varying and spatially uniform magnetic field of the form

H = H0 cos��t� , �3�

where H0 is the field amplitude, � is the field frequency, and
t is the time variable. The excited electromotive force E,
which is the same in all SRRs, is given by the expression

E = E0 sin��t�, E0 � �0�SH0, �4�

where S is the area of each SRR loop and �0 is the permit-
tivity of vacuum. Each SRR exposed to the external field
given by Eq. �3� is a nonlinear oscillator exhibiting a reso-
nant magnetic response at a particular frequency, which is
very close to its linear resonance frequency ��=1 /	LC�

�for R
0�.
All SRRs in an array are coupled together due to magnetic

dipole-dipole interaction through their mutual inductances.
However, we assume below only nearest-neighbor interac-
tions, so that the neighboring SRRs are coupled through their
mutual inductances Mx and My. This is a good approxima-
tion in the planar configurations �see Fig. 1�a��, even if SRRs
are located very close. The validity of the nearest-neighbor
approximation for the planar-axial configuration �see Fig.
1�b�� has been verified by taking into account the interaction
of SRRs with their four nearest neighbors. Assuming that the
mutual inductance Mx,y

�s� between an SRR and its s - th neigh-
bor decays with distance as Mx,y

�s� 
Mx,y /s3 �12�, we find
practically the same results. Therefore, the electrical equiva-
lent of an SRR array in an alternating magnetic field is an
array of nonlinear RLC oscillators coupled with their nearest
neighbors through their mutual inductances; the latter are
being driven by identical alternating voltage sources. Equa-
tions describing the dynamics of the charge Qn,m and the
current In,m circulating in the �n ,m�th SRR may be derived
from Kirchhoff’s voltage law for each SRR �11,13�,

dQn,m

dt
= In,m, �5�

L
dIn,m

dt
+ RIn,m + f�Qn,m� = − Mx�dIn−1,m

dt
+

dIn+1,m

dt
�

− My�dIn,m−1

dt
+

dIn,m+1

dt
� + E ,

�6�

where f�Qn,m�=Un,m is given implicitly from Eq. �2�. Using
the relations

��
−2 = LC�, � = t��, Ic = Uc��C�, Qc = C�Uc, �7�

E = Uc�, In,m = Icin,m, Qn,m = Qcqn,m, �8�

and Eq. �4�, we normalize Eqs. �5� and �6� to the form

dqn,m

d�
= in,m, �9�

din,m

d�
+ �in,m + f�qn,m� + �x�din−1,m

d�
+

din+1,m

d�
�

+ �y�din,m−1

d�
+

din,m+1

d�
� = �0 sin�	�� , �10�

where �=RC��� is the loss coefficient, �x,y =Mx,y /L are the
coupling parameters in the x and the y directions, respec-
tively, and �0=E0 /Uc. Note that the loss coefficient �, which
is usually small ��
1�, may account both for Ohmic and
radiative losses �14�. Neglecting losses and without an ap-
plied field, Eqs. �9� and �10� can be derived from the Hamil-
tonian

H = �
n,m
�1

2
q̇n,m

2 + Vn,m
 − �
n,m

��xq̇n,mq̇n+1,m + �yq̇n,mq̇n,m+1� ,

�11�

where the nonlinear on-site potential Vn,m is given by

Vn,m � V�qn,m� = �
0

qn,m

f�qn,m� �dqn,m� �12�

and q̇n,m�dqn,m /d�. The analytical solution of Eq. �2� for
un,m= f�qn,m� with the conditions of un,m being real and
un,m�qn,m=0�=0 gives the approximate expression

f�qn,m� 
 qn,m −
�

3��

qn,m
3 + 3� �

3��
�2

qn,m
5 , �13�

which is valid for relatively low qn �qn�1,n=1,2 , . . . ,N�.
Thus, the on-site potential is soft for �=+1 and hard for
�=−1. In the 2D case the mutual inductances Mx and My
may differ both in their sign, depending on the configuration,
and their magnitude. Actually, even in the planar 2D configu-
ration with dx=dy a small anisotropy should be expected be-
cause we consider SRRs having only one slit. This aniso-
tropy can be effectively taken into account by considering
slightly different coupling parameters �x and �y. The cou-
pling parameters �x,y as well as the loss coefficient � can be
calculated numerically for this specific model with a high
accuracy. However, for our purposes, it is sufficient to esti-
mate these parameters for realistic �experimental� array pa-
rameters, ignoring the nonlinearity of the SRRs and the ef-
fects due to the weak coupling as in Refs. �11,12� with the
following typical values ��0.02 and ��0.01.

We construct discrete breathers located in the corner of a
two-dimensional lattice of 15�15 sites using the anticon-
tinuous limit method as in Ref. �11� for the set of Eqs. �9�
and �10�, setting �=0 and �0=0 �Hamiltonian discrete
breathers�. For the case of �=+1 corresponding to self-
focusing nonlinearity and period Tb=6.69, we may construct
linearly stable breathers for parameters up to �x=�y =0.029.
The breather stability has been checked through the Floquet
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monodromy matrix throughout the Brief Report. For the case
where an anisotropy is introduced, �x��y, linearly stable
discrete breathers can be constructed up to �x=0.028 and
simultaneously �y =0.031, or for the case of planar-axial con-
figuration up to �x=0.031 and at the same time �y =−0.028.
If we look for discrete breathers constructed in the middle of
the upper edge of the lattice, for example, we find that the
values of the coupling where an instability occurs are slightly
decreased �e.g., the upper stability limit of coupling for pla-
nar geometry is �x=�y =0.028�. Several cases of linearly
stable discrete breathers are shown in Fig. 2 for �=+1. The
same analysis holds for �=−1 �defocusing nonlinearity�
where the upper stability limit for the values of couplings are
on the same order of magnitude as for �=+1, both for the
corner and the edge breathers �see Fig. 3�. The breather pe-
riod in the latter case is Tb=5.8.

Localized modes in the damped-driven case are con-
structed for �=0.01, �0=0.04, and �=+1 with the method
described in Ref. �11�. The resulting localized modes are
called dissipative breathers, and their examples are shown in
Fig. 4 for Tb=5.8 and �a� �x=�y =0.0007, �b� �x=0.0022 and
�y =0.0052, and �c� �x=0.0052 and �y =−0.0022. The dissi-
pative modes have been evolved in time, and we found that
at long times some dissipative breathers constructed for rela-
tively large couplings loose their initial shape and finally
decay.

Additionally, we calculate the total energy of discrete
breathers in a lattice with planar and planar-axial configura-
tions for �=+1 and Tb=6.69 �Hamiltonian case�. Figure 5
shows the energy histograms of the relevant corner of the
lattice normalized to the energy of the corner �1,1� breather.
In order to construct the histograms centered in each of the
lattice sites, we normalized it to the edge breather energy. In
case �a� the discrete breather is constructed in a lattice of
coupling �x=�y =0.028, in �b� the case with anisotropy in
couplings �x=0.026 and �y =0.029, while in case �c� cou-
plings are �x=0.029 and �y =−0.026. The energy of the dis-
crete breathers as a function of the lattice site increases, i.e.,
as the discrete breather is constructed in the interior of the
lattice, the energy is larger compared to the discrete breather
that is located in the corner of the lattice.

We note that in the one-dimensional case the bulk breath-
ers have lower energy compared to the surface ones �10�,
while in two-dimensional lattice the behavior is the contrary.
We thus find that two-dimensional surface and especially
edge breathers form easier.

Finally, we study the time evolution of the discrete
breather that is constructed in the corner site �1,1� and com-
pare this case with a discrete breather centered at the �3,3�
site for the coupling �x=�y =0.028. The breather of the latter
case after t=95Tb starts to loose its shape, in contrast to the
breather of �1,1� site which survives for much longer times,
viz., t=1450Tb �see Fig. 6�. For different coupling values
such as �x=�y =0.01 we find that both the corner �1,1� and
the inner �3,3� breathers remain stable for at least
t=1450Tb. This feature, while compatible with the fact that
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FIG. 2. �Color online� Density amplitudes qn,m for discrete
Hamiltonian breathers constructed in �a�–�c� upper left corner or
�d�–�f� upper edge of the lattice of 15�15 sites, �=+1, and
Tb=6.69. ��a�,�c�� �x=�y =0.028, ��b�,�e�� �x=0.026 and �y =0.029,
and ��c�,�f�� �x=0.029 and �y =−0.026. All plots depict a 5�5 sub-
lattice that includes the breather zones.
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tice around the linearly stable breathers.
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FIG. 4. �Color online� Density amplitude qn,m for discrete dis-
sipative breathers constructed in the upper left corner of the lattice
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the corner breathers are more stable than the inner ones,
shows additionally that in finite lattices small changes in
parameters may affect the stability properties of the breathers
�15�.

In conclusion, we have studied surface discrete breathers
located in the corner and on the edge of the two-dimensional
lattices of the split-ring resonators. Using standard numerical
methods, we found nonlinear localized modes both in the
conservative and the dissipative systems. Two-dimensional
breathers in conservative lattices have been found to be lin-
early stable for up to certain �large� values of the coupling
coefficient, in both planar and planar-axial configurations of
the split-ring-resonator lattices. Dissipative discrete surface
breathers can retain their shapes for several periods of
breather, and they depend critically on the lattice coupling.
Finally, we found that discrete breathers located deep inside
the lattice have higher energy compared to breathers located
in corners and on the edges. This distinct two-dimensional
feature of nonlinear localized modes contrasts with the one-
dimensional behavior being attributed to the larger number
of neighbors of the two-dimensional lattice. Furthermore, the
two-dimensional breathers located inside the lattice loose
rapidly their initial shapes as they evolve in time, while
the surface breathers are seen to be stable at least for
t�1500Tb.
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